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Abstract

Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the

application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy

bulk density, canopy height, canopy fuel weight, and canopy base height, are required to accurately map the spatial distribution of canopy

fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing

technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this study,

regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated

from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State.

Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown fuel weight):

R2=0.86; ln(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98]. A cross-validation procedure was used to

assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy fuel parameters

over forest areas in the Pacific Northwest.
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1. Introduction

The use of remote sensing for the acquisition of accurate,

spatially-explicit estimates of canopy height, canopy base

height, canopy bulk density, and total canopy fuel weight

would significantly improve the data layer creation process

for wildfire simulation models such as FARSITE (Finney,

1998). Previously, these data layers [typically formatted as

GIS (Geographic Information System) coverages] were

generated using the output from stand-level growth models

such as the Forest Vegetation Simulator (FVS), which use a

tree list to drive the simulations (Wykoff et al., 1982; Teck

et al., 1996). Since the stand-level estimates generated from

these models are (typically) based upon a relatively limited
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inventory of stand attributes, they will be subject to

sampling error and will be unable to capture variability in

stand structure at fine spatial scales over the landscape. If

canopy structure metrics could be accurately estimated

using high-resolution remotely-sensed data, the application

of fire spread models to landscapes would be significantly

improved, resulting in an increased efficacy of fuel manage-

ment programs in general.

The emergence of a new generation of active, high-

resolution remote sensing systems has the potential to allow

for more accurate and efficient estimation of canopy fuel

characteristics over extensive areas of forest. In particular, the

capability of active infrared laser scanning (LIDAR) systems

to acquire direct, three-dimensional measurements of canopy

structure could significantly improve estimates of the

quantity and distribution of canopy biomass and fuels.

Previous studies have shown that LIDAR can be used to

estimate a variety of forest inventory parameters, including

biomass, stem volume, stand height, basal area, and stand
ent 94 (2005) 441–449



Fig. 1. Orthophoto of Capitol State Forest study area in Washington State (UTM coordinate system). Location and size of field plots are shown in white

(courtesy of Washington State Department of Natural Resources, Resource Mapping Section).
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density (Naesset, 1997a, 1997b; Means et al., 2000). A study

in Norway developed an approach to estimate Lorey’s height,

crown lengths, and heights to crown base for plots in spruce-

pine forest using height quantile estimators (Naesset &

Okland, 2002). A recent study carried out in Switzerland used

a K-means clustering algorithm to measure individual tree

crown dimensions for forest fire risk assessment (Morsdorf et

al., 2004). A recent study presented a methodology for

estimating crown fuel parameters at individual tree and plot

levels in an intensively managed, homogeneous Scots pine

forest with little understory due to thinning (Riano et al.,

2004). However, it is unclear how well this procedure works

in stands with a more complex structure. While preliminary

results from a study investigating the use of airborne LIDAR

for estimation of canopy fuel parameters in stands with

complex structure have been previously reported, there was

no model validation carried out to assess the reliability of the

models (Andersen et al., 2004). In this paper, we present and

evaluate an approach to estimating several critical canopy

fuel metrics, including canopy fuel weight, canopy bulk

density, canopy base height, and canopy height, using high-

density, multiple-return LIDAR data collected over a Pacific

Northwest conifer forest.
1 The use of commercial names is for the convenience of the reader and

does not imply any endorsement by the USDA Forest Service or the

University of Washington.
2. Study area

The study area for this investigation was a 5.2 km2 area

within Capitol State Forest, Washington State, USA. This

forest is primarily composed of coniferous Douglas-fir

(Pseudotsuga menziesii) and western hemlock (Tsuga heter-

ophylla), and, to a lesser degree, hardwoods such as red alder

(Alnus rubra) and maple (Acer spp.). The extent of the study
area is shown in Fig. 1. This site is the location of an ongoing

experimental silvicultural trial, and contains coniferous

commercial forest stands of varying age and density (Curtis

et al., 2004). An extensive, high-accuracy topographic survey

was conducted throughout the area to enable rigorous

evaluation of a variety of technologies relevant to precision

forest management, including high-resolution remote sensing

and terrestrial geopositioning systems.

A total of 101 fixed area field inventory plots were

established over a range of stand conditions in 1999 and 2003

(see Fig. 1). Plot sizes ranged from 0.02 to 0.2 ha. Measure-

ments acquired at each plot included species and diameter at

breast height (DBH) for all trees greater than 14.2 cm in

diameter. In addition, total height and height-to-base-of-live-

crown were measured on a representative selection of trees

over the range of diameters using a hand-held laser range-

finder. A detailed description of the plot measurement

protocol can be found in a previous report (Chapter 3, Curtis

et al., 2004). The data from this selection were used to build

regression models for estimating height and crown ratio for

all trees within the inventory plots.
3. Lidar data

High-density LIDAR data were acquired over the study

area with a SAAB TopEye1 system mounted on a helicopter

platform in March, 1999. The system settings and flight

parameters are shown in Table 1. The vendor provided raw



Table 1

LIDAR data specifications

Flying height 200 m

Flying speed 25 m/s

Swath width 70 m

Forward tilt 88
Laser pulse density 3.5 pulses/m2

Laser pulse rate 7000 Hz
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lidar data consisting of XYZ coordinates, off-nadir angle,

and intensity for all LIDAR returns within the area. In

addition, the vendor provided a bfiltered groundQ data set

consisting of points presumed to be measurements of the

terrain surface, identified via a proprietary filtering algo-

rithm. These filtered ground returns were used to generate a

1.52 m digital terrain model (DTM). Comparison with

check points collected in a high-accuracy topographic

survey showed that the DTM had a mean error of 0.22

with a standard deviation of 0.24 m (Reutebuch et al.,

2003). The LIDAR system collected up to four returns from

each laser pulse, and all returns were used in this paper. The

elevations of the LIDAR measurements were converted to

heights by subtracting off the elevation of the underlying

terrain (given by the DTM).
Fig. 2. Estimation of fuel parameters at inventory plot within dense, mature

Douglas-fir canopy unit, Capitol Forest study area.
4. Field-based fuel estimates

Field-based estimates of canopy fuels were generated

using the methodology developed for the Fire and Fuels

Extension to the Forest Vegetation Simulator (FFE-FVS) by

Scott and Reinhardt (Beukema et al., 1997; Scott &

Reinhardt, 2001). In this approach, the crown fuel weight

for each tree is estimated using the equations developed by

Brown and Johnson (1976), where stem diameter is the

primary predictor variable. These equations generate esti-

mates of the total dry weight of live and dead material for

each individual tree crown, and provide a break-down of the

proportion of the total crown weight that is associated with

foliage and different size classes of branchwood. According

to the methodology of Scott and Reinhardt, crown fuels are

defined as foliage and fine branchwood (50% of the 0 to 6

mm diameter branchwood). These crown weight equations

can then be used to generate total crown fuel weight

estimates for each tree in a plot given a tree list with

information including species, diameter at breast height

(DBH), crown ratio, and crown class. It should be noted that

since crown class was not collected for all plots used in this

study, crown weight was not adjusted for relative position of

the tree within the stand.

In the context of Scott and Reinhardt’s methodology, it is

assumed that the crown material on each tree crown is

evenly distributed vertically along a crown’s length. In order

to generate an aggregate measure of canopy bulk density at

the plot level, the fuel weight for all trees within the plot are

summed at 0.3048-m increments from the ground to the top
of the tallest tree. The canopy bulk density is then defined as

the maximum 4.6 m running mean of crown fuel density

within the plot. Following Scott and Reinhardt (2001),

canopy base height is calculated as the lowest height at

which the canopy fuel density exceeds a critical threshold

(0.011 kg/m3). Analogously, canopy height is defined as the

highest height at which the canopy fuel density is greater

than 0.011 kg/m3. Using this methodology, estimates of

canopy fuel weight, canopy bulk density, canopy base

height, and canopy height were generated for each plot

within the study area. An example of the canopy bulk

density distribution and fuel parameter estimates for an

inventory plot in the dense, mature Douglas-fir canopy unit

is shown in Fig. 2.
5. Lidar-based fuel estimates

In an earlier study, Naesset and Bjerknes (2001) used a

limited number of LIDAR-based predictor variables, includ-

ing the maximum (hmax), mean (hmean), and coefficient of

variation (CV) of the LIDAR heights, several quantile-based

metrics describing the LIDAR height distribution [25th

(h25), 50th (h50), 75th (h75), and 90th (h90) percentile

heights], and a canopy density metric (D; percentage of first

returns within the canopy) to estimate tree heights and stem

density within young stands in Norway. It was expected that

this pool of potential independent variables will collectively

provide a concise description of canopy structure within the

plot area, and therefore could also be used to estimate other
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Fig. 4. Field-measured versus predicted (log-transformed) canopy bulk

density (R2=0.84; P-value b0.0001). Line shows 1:1 relationship.
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structural metrics such as canopy fuel weight, canopy bulk

density, canopy base height, and canopy height. A program

was written in IDL (Research Systems Inc. Interactive Data

Language) for extraction of the LIDAR data within each plot

area and calculation of these metrics from the distribution of

LIDAR heights. This list of plot-level LIDAR metrics was

then merged with the plot-level field-based canopy fuel

estimates in a single text file and imported into R (http://

www.r-project.org/), a statistical software package. Stepwise

regression and all-subsets variable selection procedures were

used within R to identify possible models for estimating each

dependent variable, where an emphasis was placed upon

developing parsimonious models containing a limited

number of independent variables. A leave-one-out cross-

validation procedure was used to assess the predictive value

of each regression model, through a comparison of the root-

mean-squared prediction error (or root-mean-square-error

for cross-validation, denoted as RMSEcv) and the standard

error of the regression, denoted as RMSE (Michaelsen,

1987). In this context, RMSEcv is equivalent to the root-

mean of the well-known PRESS statistic (sum of squares of

predicted residuals; Neter et al., 1996). A close agreement

between RMSEcv and RMSE indicates that the regression

model is not overfitting the data and has good predictive

value.
6. Results

6.1. Canopy fuel weight

Residual plots for canopy fuel weight prediction indi-

cated that a square root transformation of canopy fuel

weight was appropriate to meet the assumptions of linear
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Fig. 3. Field-measured versus predicted (transformed) foliage weight

(R2=0.86; P-value b0.0001). Line shows 1:1 relationship.
regression. The model identified via regression analysis for

estimating canopy fuel weight took the following form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
canopy fuel weight

p
¼ 22:7þ 2:9ð Þh25 þ � 1:7ð Þh90

þ 106:6ð ÞD

where D is the fraction of LIDAR first returns from the

canopy (above 2 m in height).

This model had a coefficient of determination (R2) of

0.86. It should be noted that in this context the coefficient

of determination represents the percentage of variability

explained by the regression relationship in the linearized

space resulting from the transformation, not in the
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Fig. 5. Field-measured versus predicted canopy base height (R2=0.77;

P-value b0.0001). Line shows 1:1 relationship.
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original scale, so this measure should be interpreted with

caution. A scatterplot of the field-based versus predicted

LIDAR-based plot-level measures of (transformed) canopy

fuel weight is shown in Fig. 3. The RMSE for this

regression model was 11.1, and the RMSEcv was 11.5 (in

transformed units).

6.2. Canopy bulk density

A logarithmic transform of canopy bulk density was used

to stabilize the variance and account for the nonlinearity
Fig. 7. Canopy height map (30-m resol
evident in the residual plot. The model identified via

regression analysis for estimating canopy bulk density took

the following form:

ln canopy bulk densityð Þ ¼ � 4:3þ 3:2ð Þhcv þ 0:02ð Þh10

þ 0:13ð Þh25 þ � 0:12ð Þh90

þ 2:4ð ÞD

This model had a coefficient of determination of 0.84.

A scatterplot of the field-based versus predicted LIDAR-

based plot-level measures of (log-transformed) canopy

bulk density is shown in Fig. 4. The RMSE for this

regression model was 0.27, and the RMSEcv from cross-

validation was 0.29.

6.3. Canopy base height

The final model identified via regression analysis for

estimating canopy base height took the following form:

Canopy base height ¼ 3:2þ 19:3ð Þhcv þ 0:7ð Þh25
þ 2:0ð Þh50 þ ð� 1:8Þh75 þ ð� 8:8ÞD

This model had a coefficient of determination of 0.77.

A scatterplot of the field-based versus predicted (LIDAR-

based) plot-level measures of canopy base height is

shown in Fig. 5. The RMSE for this regression model

was 3.9 m, and the RMSEcv from cross-validation was

4.1 m.
ution), Capitol Forest study area.



Fig. 8. Canopy fuel weight map (30-m resolution), Capitol Forest study area.
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6.4. Canopy height

The final model identified via regression analysis for

estimating canopy height took the following form:

Canopy height ¼ 2:8þ 0:25ð Þhmax þ 0:25ð Þh25

þ � 1:0ð Þh50 þ 1:5ð Þh75 þ 3:5ð ÞD
This model had a coefficient of determination of 0.98. A

scatterplot of the field-based versus predicted LIDAR-based
Fig. 9. Canopy bulk density map (30-m re
plot-level measures of canopy height is shown in Fig. 6. The

RMSE for this regression model was 1.3 m, and the

RMSEcv from cross-validation was 1.5 m.

6.5. Mapping canopy fuels

After regression models have been developed to establish

a functional relationship between the LIDAR data and the

canopy fuel measures, these equations can be used to
solution), Capitol Forest study area.



Fig. 10. Canopy base height map (30-m resolution), Capitol Forest study area. Areas with no canopy vegetation present are shown in white.
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generate maps of canopy fuel distributions over the entire

extent of the LIDAR data coverage. These maps represent

spatially-explicit data layers that can be used as direct inputs

into fire behavior models to support the analysis of fire risk

and the implementation of fuel mitigation programs. Figs.

7–10 show maps of canopy height, canopy fuel weight,

canopy bulk density, and canopy base height over the

Capitol Forest study area, with measurements provided at a

30�30 m grid cell resolution.
7. Discussion

The results of this study indicate that LIDAR can be used

to generate accurate estimates of critical canopy fuel metrics,

including canopy fuel weight, canopy bulk density, canopy

base height, and canopy height. It appears that the LIDAR-

based forest metrics, based upon the height distribution of

LIDAR measurements, capture structural information related

to quantitative canopy fuel characteristics. Results of the

cross-validation procedure, as well as qualitative assessment

of the canopy fuel maps, indicate that the models have

reasonable predictive value over the extent of the study area.

There are a number of possible sources for the

discrepancy between the LIDAR-based metric within a

plot area and the model-based estimate generated from a

tree list. First, crown base heights and tree heights for

many of the trees were not directly measured in the field

but were estimated using regression models. This could

possibly introduce a significant source of variability into

the field-based canopy fuel estimates. Second, defining
canopy base height and stand height as a threshold value

of crown bulk density makes this metric highly sensitive

to the modeling assumptions related to how fuels are

vertically distributed within a tree crown. Even small

deviations from the assumed uniform distribution of fuels

along the length of the crown for several trees in the plot

could have a large effect on the estimate of canopy base

height and canopy height. Edge effects could also lead to

significant differences between the LIDAR- and field-

based estimates. The field-based canopy fuel estimates do

not account for the spatial position of tree crowns within

the plot, and therefore the crown fuel estimates are

calculated for the entire crown associated with each stem

falling in the plot, even if a large proportion of the crown

is located outside of the plot area. In contrast, the LIDAR

data extracted for a given plot include only measurements

of canopy materials that were located within the plot area.

Edge effects are likely more pronounced in less dense

stands and where plot sizes are smaller. Conversely, we

would expect edge effects be less important in stands

with a more even and uniform closed canopy.

Another possible reason for a discrepancy between

LIDAR and field-based estimates is the nature of laser

scanner data. LIDAR data represent measurements of all

canopy components, including foliage, branches, and stems.

Furthermore, the relative frequency of stem and large branch

measurements increases with a lower stem density, since

more laser pulses are able to penetrate through canopy

openings. However, in the context of canopy fuels analysis,

stems and large branches are not considered fuel. This may

lead to a negative bias in the LIDAR estimate of canopy
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base height in less dense stands when compared to the field-

based estimates.

When implementing the regression-based approach to

mapping canopy fuel variables as described here, it is critical

to acquire field data over the full range of stand types present

in the area to be mapped. Estimates of fuel variables in areas

with different stand structures from those sampled are

extrapolations outside the domain of the field data and are

unreliable. This is particularly evident in the case of

estimating canopy bulk density (Fig. 9) and canopy base

height (Fig. 10), where the estimates are reasonable within

stands where field data were collected, but are dubious in

areas outside of these sampled stand types (i.e., clearcuts,

very young stands). It should also be noted that the variability

in stand structures present within the Capitol Forest study

area is not necessarily representative of natural structural

variability within Pacific Northwest forests. For example,

many of the plots used in this analysis were established in a

heavily thinned unit, where many residual trees were taller

than 45 m, yet the fuel loading was quite low due to the low

residual stem density (40 trees per hectare). Therefore, the

regression models developed in this paper are meant to

demonstrate the potential of this methodology for canopy fuel

estimation, and do not necessarily reflect fundamental

physical relationships between lidar distributions and bio-

physical properties of natural stands.
8. Conclusions

The results of this study indicate that LIDAR can be used

to estimate canopy fuel metrics efficiently and accurately

over an extensive area within a Pacific Northwest conifer

forest. Canopy fuel estimates based upon the distribution of

LIDAR height measurements can be used to generate maps

that provide a spatially-explicit description of the distribution

of canopy fuels over the landscape. These maps (or GIS

coverages) can serve as a direct input into a fire-behavior

model such as FARSITE, potentially enabling amore realistic

and accurate prediction of fire spread and intensity.

In the future, this methodology will be applied to LIDAR

data collected in different stand types, including a fire-prone

site in eastern Washington State. A more rigorous model

validation procedure will be carried out to assess the general

applicability of these models in different forest types and with

LIDAR data acquired from different systems and at different

densities. It is likely that a more extensive pool of explanatory

variables will be developed to improve our understanding of

the structural relationships between the distribution of

LIDAR measurements and canopy fuel characteristics.
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